Homework 2

Question 1

Solve the following differential equations using classical methods. Assume zero initial conditions.

$$
\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+20 x=5 u(t)
$$

Repeat the question using Laplace transform, assuming zero initial conditions.

Solution:

In this case the characteristic equation is $\lambda^{2}+6 \lambda+20=0$ with solutions $\lambda_{1,2}=-3 \pm j 3.3166$
so the homogeneous solution is $x_{h}(t)=A e^{(-3+j 3.3166) t}+B e^{(-3-j 3.3166) t}$.
The postulated particular solution is $x_{p}(t)=C$.
Substituting the particular solution into the original differential equation one gets
$C=0.25$.
So, we have $x(t)=0.25+A e^{(-3+j 3.3166) t}+B e^{(-3-j 33166) t}$.
To find A and B note that $x(0)=0.25+A+B=0$.
Also, since $x^{\prime}(t)=(-3+j 3.3166) A e^{(-3+j 3.3166) t}+(-3-j 3.3166) B e^{(-3-j 3.3166) t}$, and $x^{\prime}(0)=$ $(-3+j 3.3166) A+(-3-j 3.3166) B=0$.

Solving simultaneously for A and B gives $A=-0.125+j 0.1131=B^{*}$.
Therefore $x(t)=0.25+(-0.125+j 0.1131) e^{(-3+j 33166) t}+(-0.125-j 0.1131) e^{(-3-j 3.3166) t}$. This expression can be simplified into $x(t)=0.25-e^{-3 t}[0.25 \cos 3.3166 t+0.2262 \sin 3.3166 t]$.

The Laplace transform of the differential equation, assuming zero initial conditions, is $\left(\left(s^{2}+6 s+20\right) X(s)=\frac{5}{s}\right.$

Solving for $X(s)$ and expanding by partial fractions,
$X(s)=\frac{5}{s\left(s^{2}+6 s+20\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+6 s+20}$
Multiplying by the lowest common denominator and equating the same powers of s on both sides,
$A+B=0, \quad 6 A+C=0, \quad 20 A=5$
Combining equations,
$A=\frac{1}{4}, \quad B=-\frac{1}{4}, \quad C=-\frac{3}{2}$
Thus,
$X(s)=\frac{\frac{1}{4}}{s}-\frac{\frac{1}{4} s+\frac{3}{2}}{s^{2}+6 s+20}$

The roots of the quadratic are complex and located at -3 ± 3.317
Thus, use the following form for exponentially damped sinusoids.
$X(s)=\frac{\frac{1}{4}}{s}-\frac{\frac{1}{4}(s+3)+\frac{3}{4 \sqrt{11}} \sqrt{11}}{(s+3)^{2}+11}$
Taking the inverse Laplace transform,
$x(t)=0.25-e^{-3 t}(0.25 \cos 3.317 t+\sin 3.317 t)$

Question 2

Find the transfer function, $G(s)=X_{2}(s) / F(s)$, for the system shown below:

Solution:

The system has two independent translational displacements, so we can write the following two equations:

$$
\begin{array}{lc}
X_{1}: & \left(s^{2}+2 s+7\right) X_{1}(s)-(s+5) X_{2}(s)=0 \\
X_{2}: & -(s+5) X_{1}(s)+\left(2 s^{2}+3 s+5\right) X_{2}(s)=F(s)
\end{array}
$$

Solving we get:

$$
\begin{gathered}
X_{2}(s)=\frac{\left|\begin{array}{cc}
s^{2}+2 s+7 & 0 \\
-(s+5) & F(s)
\end{array}\right|}{\left|\begin{array}{cc}
s^{2}+2 s+7 & -(s+5) \\
-(s+5) & 2 s^{2}+3 s+5
\end{array}\right|}=\frac{\left(s^{2}+2 s+7\right) F(s)}{\left(s^{2}+2 s+7\right)\left(2 s^{2}+3 s+5\right)-(s+5)^{2}} \\
=\frac{\left(s^{2}+2 s+7\right) F(s)}{2 s^{4}+7 s^{3}+24 s^{2}+21 s+10}
\end{gathered}
$$

The resulting transfer function can be written as

$$
\frac{X_{2}(s)}{F(s)}=\frac{1}{2} \frac{s^{2}+2 s+7}{s^{4}+3.5 s^{3}+12 s^{2}+10.5 s+5}
$$

Question 3
Represent the following transfer function in state space.

$$
T(s)=\frac{s(s+2)}{(s+1)\left(s^{2}+2 s+5\right)}
$$

$$
\begin{aligned}
& T(s)=\frac{s(s+2)}{(s+1)\left(s^{2}+2 s+5\right)} \quad \Rightarrow \\
& T(s)=\frac{s^{2}+2 s+0}{s^{3}+3 s^{2}+7 s+5} \\
& \text { stabl-space model: } \\
& \left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x+D u
\end{array}\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-5 & -7 & -3
\end{array}\right] \\
& B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& C=\left[\begin{array}{lll}
0 & 2 & 1
\end{array}\right] \\
& D=0
\end{aligned}
$$

Questions 4
Find the transfer function $G(s)=\frac{Y(s)}{R(s)}$ for the following system represented in state space:

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-3 & -2 & -5
\end{array}\right] \boldsymbol{x}+\left[\begin{array}{c}
0 \\
0 \\
10
\end{array}\right] r \\
y & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] x
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-3 & -2 & -5
\end{array}\right] \quad B=\left[\begin{array}{c}
0 \\
0 \\
10
\end{array}\right]
$$

The transfer function is

$$
G(s)=\frac{Y(s)}{R(s)}=C(s I-A)^{-1} \cdot B+D
$$

Using the Martial to address it.

```
sym s;
\(\mathrm{A}=\left[\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 1 ; & -3 & -2 & -5\end{array}\right]\);
\(B=[0 ; 0 ; 10] ; \mid\)
\(\mathrm{C}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\);
\(\mathrm{D}=[0]\);
\(\mathrm{G}=\mathrm{C} *\) inv \((\) s*eye \((3,3)-\mathrm{A}) * \mathrm{~B}+\mathrm{D}\)
```

$\mathrm{G}=$
$\frac{10}{s^{3}+5 s^{2}+2 s+3}$

$$
G(s)=\frac{10}{s^{3}+5 s^{2}+2 s+3}
$$

